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LECTURE 11

• Mean Value Theorem
• Extremal and Inflection Points
• Vector spaces



Theorem (Rolle's Theorem)

If 𝑓 is continuous on a closed interval [𝑎, 𝑏] and differentiable at 
every point of the open interval (𝑎, 𝑏) and 𝑓 𝑎 = 𝑓 (𝑏) then there 
is at least one point 𝑥0 ∈ 𝑎, 𝑏 such that 𝑓′ 𝑥0 = 0.

Proof.

If 𝑓 is constant – trivial. If not, 𝑓 𝑎 ≠ inf(𝑓( 𝑎, 𝑏 ) or 𝑓 𝑎 ≠
sup(𝑓( 𝑎, 𝑏 ). Suppose (without losing generality) that 𝑓 𝑎 ≠
inf(𝑓( 𝑎, 𝑏 ). Since a function continuous on a closed interval 
assumes its extreme values, there exists 𝑥0 ∈ [𝑎, 𝑏] such that 
𝑓 𝑥0 = inf(𝑓( 𝑎, 𝑏 ) and 𝑥0 ≠ 𝑎, 𝑥0 ≠ 𝑏. Hence 𝑓 has a local 
minimum at 𝑥0 and 𝑓′ 𝑥0 = 0. QED



Theorem (Mean Value Theorem)

If 𝑓 is continuous on a closed interval [𝑎, 𝑏] and differentiable at 
every point of (𝑎, 𝑏) then there is at least one point 𝑥0 ∈ 𝑎, 𝑏

such that 𝑓′ 𝑥0 =
𝑓 𝑏 −𝑓 𝑎

𝑏−𝑎
.

Proof.

Let ℎ 𝑥 =
𝑓 𝑏 −𝑓 𝑎

𝑏−𝑎
(𝑥 − 𝑎) + 𝑓(𝑎), i.e., 𝑦 = ℎ(𝑥) is the line 

through 𝑎, 𝑓 𝑎 and 𝑏, 𝑓 𝑏 . Consider 𝑔 𝑥 = 𝑓 𝑥 −

ℎ(𝑥).Then 𝑔 is continuous on [𝑎, 𝑏] and is differentiable on (𝑎, 𝑏). 

𝑔 𝑎 = 𝑓 𝑎 −
𝑓 𝑏 −𝑓 𝑎

𝑏−𝑎
0 − 𝑓 𝑎 = 0 and 

𝑔 𝑏 = 𝑓 𝑏 −
𝑓 𝑏 −𝑓 𝑎

𝑏−𝑎
𝑏 − 𝑎 − 𝑓 𝑎 = 𝑓 𝑏 − 𝑓 𝑏 +

𝑓 𝑎 − 𝑓 𝑎 = 0. By Rolle's Theorem there exists 𝑥0 such that 

0 = 𝑔′ 𝑥0 = 𝑓′ 𝑥0 −
𝑓 𝑏 −𝑓 𝑎

𝑏−𝑎
. QED



Corollary 1. (of the mean value theorem)
If 𝑓′(𝑥) = 0 on an open interval (𝑎, 𝑏) then f is constant on the 
interval.

Proof. (by contradiction)

Suppose f is not constant on (𝑎, 𝑏). Then, for some 𝑐, 𝑑  (𝑎, 𝑏)
𝑓 𝑐 ≠ 𝑓(𝑑). From the MVT applied to f on (𝑐, 𝑑), there exists 

𝑥0 ∈ (𝑐, 𝑑) such that 𝑓′ 𝑥0 =
𝑓 𝑑 −𝑓 𝑐

𝑑−𝑐
≠ 0 because 𝑓(𝑐) ≠

𝑓(𝑑). QED



Corollary 2.
If 𝑓(𝑥) is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏) and 
𝑓′ 𝑥 > 0 for every 𝑥(𝑎, 𝑏) then 𝑓(𝑥) is increasing on the 
interval. 

Corollary 3.
If 𝑓(𝑥) is continuous on [𝑎, 𝑏] and differentiable on (𝑎, 𝑏) and 
𝑓′ 𝑥 < 0 for every 𝑥(𝑎, 𝑏) then 𝑓(𝑥) is decreasing on the 
interval. 

Comprehension. Prove Corollaries 2 and 3.



Corollary 4.
Let 𝑓 (𝑥) be differentiable in an open interval containing 𝑝 and let 
𝑓′ 𝑝 = 0. Then

• if 𝑓′ 𝑥 > 0 for 𝑥 < 𝑝 and 𝑓′ 𝑥 < 0 for 𝑥 > 𝑝 then 𝑓 has a 
local maximum at 𝑝,

• if 𝑓′ 𝑥 < 0 for 𝑥 < 𝑝 and 𝑓′ 𝑥 > 0 for 𝑥 > 𝑝 then 𝑓 has a 
local minimum at 𝑝,

• if 𝑓′ 𝑥 doesn't change its sign around 𝑝 then there 𝑓 has no 
extreme value at 𝑝.

Proof. 

It is an immediate consequence of corollaries 2 and 3. QED



Example.
Discuss monotonicity of 𝑓 𝑥 = 𝑥3 − 3𝑥2 − 9𝑥 + 5.

𝑓′ 𝑥 = 3𝑥2 − 6𝑥 − 9 = 3 𝑥2 − 2𝑥 − 3 = 3 (𝑥 + 1)(𝑥 − 3).
Hence, 𝑓′ 𝑥 = 0 at 𝑥 = −1 and at 𝑥 = 3.
3 𝑥 + 1 𝑥 − 3 < 0 iff 𝑥 ∈ (−1,3) hence, 𝑓 is decreasing on 
(−1,3) and increasing on −∞,−1 ∪ (3,∞). As a bonus we 
obtain that 𝑓 has a locally maximal value of 10 at 𝑥 = −1 and a 
locally minimal value of −22 at 𝑥 = 3.



Remark. (on approximation)
The Mean Value Theorem says that (under some conditions), 
given two points 𝑥0 and x there exists a point 𝑐 ∈ (𝑥0, 𝑥) such that

𝑓′ 𝑐 =
𝑓 𝑥 −𝑓(𝑥0)

𝑥−𝑥0
which means 𝑓 𝑥 − 𝑓(𝑥0) = 𝑓′ 𝑐 (𝑥 − 𝑥0) 

or 𝑓 𝑥 =𝑓 𝑥0 + 𝑓′ 𝑐 (𝑥 − 𝑥0)

If we replace 𝑓′ 𝑐 with 𝑓′ 𝑥0 we get an approximation of 𝑓 𝑥 . 
This strategy can be refined so that one can get better and better 
approximation of 𝑓 𝑥 using derivatives of higher and higher 
order. Eventually it leads to the Taylor series for a function which 
you will study in the second semester.



Definition. (convexity of a set)
A set of points S is said to be convex iff for every two points 
a,bS the segment joining a and b is contained in S.

Picture from Wikipedia

not convex

convex



Definition. (convexity of a function) 
A continuous function is said to be convex (concave up) on an 
interval (𝑝, 𝑞) iff the area above the graph of the function is a 
convex set. 

A continuous function is said to be concave (concave down) on an 
interval (𝑝, 𝑞) iff the area below the graph of the function is a 
convex set.

Fact.

If 𝑓′ 𝑥 is increasing on (𝑝, 𝑞) then 𝑓 is convex on (𝑝, 𝑞).

If 𝑓′ 𝑥 is decreasing on (𝑝, 𝑞) then 𝑓 is concave on (𝑝, 𝑞).

Proof. (common sense rather than formal)

If 𝑓′ 𝑥 is increasing on (𝑝, 𝑞) then 𝑓 grows faster and faster 
which means its graph is bent upward.



Definition.

If convexity of 𝑓 changes at a point 𝑡 then 𝑡 is called a point of 
inflection for 𝑓.

The last fact clearly implies the following:

Fact.

If 𝑓 is twice differentiable on (𝑝, 𝑞) then:

• if 𝑓′′ 𝑥 > 0 on (𝑝, 𝑞) then 𝑓 is convex on 𝑝, 𝑞 .

• if 𝑓′′ 𝑥 < 0 on (𝑝, 𝑞) then 𝑓 is concave on 𝑝, 𝑞 .

• if 𝑡 is a point of inflection for 𝑓 then 𝑓′′ 𝑡 = 0 (but not the 
other way around).



VECTOR SPACES

Fields

Definition.
An algebra (𝑋, #, &) with two binary operations is called a 
field if and only if

1. both operations are commutative,

2. both are associative,

3. there exist identity elements 𝑒# and 𝑒&for # and &, resp.

4. every element of 𝑋 is invertible w.r.t. #

5. every element of 𝑋 except 𝑒# is invertible w.r.t. &

6. & is distributive over #

7. |𝑋|≥ 2 (this can be replaced with 𝑒# ≠ 𝑒&).



Comments and examples.

• This definition is modeled on the algebra (ℝ,+,⋅)

• Other examples of fields are (ℚ,+,⋅), (ℂ,+,⋅)

• ℤ,+,⋅ , (ℝ,⋅, +) are not fields (for different reasons).



The story of vectors

Vectors often appear in physics where they are used to represent 
quantities such as a force, the velocity or the acceleration of an 
object and others, that are not fully representable by a single 
number like, for example, the mass of an object or the volume of 
a solid or the area of a plane region. The fact that they are 
characterized by such properties as the magnitude, the direction, 
orientation and, often, a point of origin (as in the case of a force) 
suggests that they may be represented as arrows whose length is 
proportional to the magnitude. The other attributes like direction, 
orientation and the anchor point are more or less self-explanatory. 



Geometrically, we identify a vector with an ordered pair of points 
𝐴𝐵, point 𝐴 being the anchor point or the origin of the vector 
while the location of 𝐵 depends on the remaining attributes of the 
quantity which is being represented by the vector. Usually, we 

place an arrow above 𝐴𝐵, 𝐴𝐵, to denote the vector with the origin 
A and the endpoint B.



Two vectors anchored at a point 𝐴 can be added using the 
parallelogram rule. The sum is also anchored at 𝐴. A vector can 
be scaled by a number, a scalar. Scaling preserves the origin and 
the direction of the vector. It may affect the orientation (if the 
scalar is negative) and the length (if the scalar is neither 1 nor 
−1). Hence, in order to create the algebra of vectors we consider 
the set of vectors anchored at a single point. 



In order to use algebraic approach to vectors we consider the 
space ℝ2 or ℝ3 or some such and we assume that all vectors 
originate at (0, … ,0). Thus, every vector is uniquely identified by 
a single point namely, its endpoint. This strategy results in a very 
easy algebraic definition of vector operations. If you have vectors 
𝑣1 and 𝑣2 represented by their respective endpoints (𝑎, 𝑏) and 
(𝑐, 𝑑) then 𝑣1+ 𝑣2 is represented by (𝑎 + 𝑐, 𝑏 + 𝑑) and 𝑝(𝑎, 𝑏)
by (𝑝𝑎, 𝑝𝑏)



We often write (𝑎, 𝑏) + (𝑐, 𝑑) = (𝑎 + 𝑐, 𝑏 + 𝑑) and 𝑝(𝑎, 𝑏) =
(𝑝𝑎, 𝑝𝑏) but you should be aware that this does not mean that we 
add or scale points of the plane (or other Euclidean space). We 
add and scale vectors who by default originate at (0,0) and 
terminate at (𝑎, 𝑏) and (𝑐, 𝑑), respectively.



Definition. (Vector space, formal definition)

A vector space over a field 𝕂 (also called a linear space) is an 
ordered triple (𝑉,𝕂, 𝑓), where 

• 𝑉 is an Abelian group with the operation usually denoted by 
+, whose elements are called vectors,

• 𝕂 is a field with operations denoted, somewhat confusingly 
by + and by ⋅ . Elements of 𝕂 are called scalars,

• 𝑓 is a function from 𝕂 × 𝑉 into 𝑉 called scaling. 𝑓(𝑝, 𝑣) is 
often, confusingly, denoted by 𝑝 · 𝑣,

and 

1. ∀𝜆 ∈ 𝕂 ∀𝑢, 𝑣𝑉 𝜆 · (𝑢 + 𝑣) = 𝜆 · 𝑢 + 𝜆 · 𝑣

2. (∀𝛼, 𝛽 ∈ 𝕂)(∀𝑣𝑉) (α + β) · 𝑣 = α · 𝑣 + β · 𝑣

3. (∀𝛼, 𝛽 ∈ 𝕂)(∀𝑣𝑉) (𝛼 · 𝛽) · 𝑣 = 𝛼 · (𝛽 · 𝑣)

4. (∀𝑣 ∈ 𝑉) 1 · 𝑣 = 𝑣, where 1 denotes the identity element 
of the field multiplication (second operation).



Notice the ambiguity caused by the double meaning of the +
symbol. This is a BAD, UGLY monster but it is traditional. 
We let the context decide which "+" means scalar-to-scalar, 
and which vector-to-vector addition. Otherwise, we would 
have to introduce extra symbols for scaling and vector 
addition that could be even more confusing. And it would be 
harder to type.

Similar remark applies to the dot ⋅ , which denotes both 
scaling (i.e., scalar-by-vector multiplication) and scalar-by-
scalar multiplication within the field.



Another problem is caused by the identity elements. People 
often use 0 to denote the identity element of both the scalar-to-
scalar addition and vector-to-vector addition and let the 
context decide which is which. Other people distinguish 
between the two using symbols like 0 (boldface zero), 𝕆
(blackboard bold zero), θ or Θ to denote the "zero vector". 
That’s because sometimes context is not enough, e.g., 0 ⋅ 0
makes sense both in case when the second 0 is the zero scalar 
and when the second 0 is the zero vector. 



Examples.

Let 𝕂 be any field and let 𝑛 ∈ ℕ be a natural number. Then

𝕂𝑛 = { 𝑥1, 𝑥2, … , 𝑥𝑛 : ∀𝑖 = 1,2,…𝑛 𝑥𝑖 ∈ 𝕂}

together with vector addition defined as follows:

𝑥1, 𝑥2, … , 𝑥𝑛 + 𝑦1, 𝑦2, … , 𝑦𝑛 = 𝑥1 + 𝑦1, 𝑥2 + 𝑦2, … , 𝑥𝑛 + 𝑦𝑛
(called component-wise addition)

and scaling 

𝛼 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝛼𝑥1, 𝛼𝑥2, … , 𝛼𝑥𝑛 (component-wise scaling)

forms a vector space over 𝕂. 

The zero vector is Θ = (0,0, …, 0), the inverse of a vector 𝑣 =
(𝑎1, 𝑎2, … 𝑎𝑛) is (−𝑎1, −𝑎2, … , −𝑎𝑛 ).

Notice that in case of 𝑛 = 1 we say (more or less) that every field is a 
vector space over itself.



Examples.

Let 𝕂 be a field. The set 𝕂[x] of all polynomials over 𝕂 with 
the standard polynomial addition and multiplication by a 
constant from 𝕂 forms a vector space over 𝕂. The zero vector 
0 is the zero polynomial 0. Similarly, the set 𝕂𝑛[𝑥] of 
polynomials of degree less than or equal to n over the field 𝕂
is a vector space.



Example (generalized version of the previous one)

Let 𝕂 be a field and let X be a set (any set). Let 𝑉 = 𝕂𝑋. We 
define function addition and scaling as the usual operations on 
functions (i.e., 𝑓 + 𝑔 𝑥 = 𝑓 𝑥 + 𝑔(𝑥), where the second 
plus denotes operation one in 𝕂 and 𝛼 ⋅ 𝑓 𝑥 = 𝛼 ⋅ 𝑓(𝑥)). 
𝕂𝑋 is a vector space over 𝕂.

Proof. V is obviously closed under + (the sum of two functions 
from 𝑉 exists and is a function from 𝑉). Is 𝑓 + 𝑔 + ℎ =
𝑓 + 𝑔 + ℎ ? WTH does it mean that two functions are 

equal? They have the same domain and range, which is 
obvious, and (∀𝑥 ∈ X) 𝑓 + 𝑔 + ℎ 𝑥 = [ 𝑓 + 𝑔 + ℎ](x). 

The LHS = 𝑓 𝑥 + 𝑔 + ℎ 𝑥 = 𝑓 𝑥 + 𝑔 𝑥 + ℎ 𝑥 =
𝑓 𝑥 + 𝑔 𝑥 + ℎ 𝑥 = 𝑓 + 𝑔 𝑥 + ℎ 𝑥 = [ 𝑓 + 𝑔 +
ℎ] 𝑥 = RHS.

In the same way we can show that + is commutative. What, if 
anything, is the zero vector, Θ? We define Θ 𝑥 = 0 for every 
𝑥 ∈ 𝑋, where "0" denotes the zero scalar.



Proof. (continued)

The inverse for 𝑓 (w.r.t. +) is (−𝑓) defined as −𝑓 𝑥 =
− (𝑓 𝑥 ), where the second minus denotes the inverse in 𝕂 of 
an element of 𝕂 w.r.t. +.

Remaining axioms can be verified in the similar fashion. In 
each case the identity to be verified boils down to an axiom of 
fields. E.g.,         scaling

(𝛼 + 𝛽) ⋅ 𝑓 = 𝛼 ⋅ 𝑓 + 𝛽 ⋅f  
scalar addition                 vector addition

follows from 

field multiplication

(𝛼 + 𝛽) ⋅ 𝑓(𝑥) = 𝛼 ⋅ 𝑓(𝑥) + 𝛽 ⋅ 𝑓(𝑥) for all 𝑥 ∈ 𝑋.

field addition

(distributivity law in the field)



Example. (A REALLY outlandish one)

Let X be any set. We will use 𝑉 = (2𝑋,  ) as the Abelian group 
of vectors, where  denotes the operation of symmetric difference 
of sets, 𝐴𝐵 = (𝐴 ∪ 𝐵) ∖ (𝐴 ∩ 𝐵). We will also use ℤ2, ۩,⨂ as 
the field of scalars. Scaling is defined as follows: 

for every set 𝐴, 0𝐴 =  and 1𝐴 = 𝐴.

Comprehension.
Check that 𝑉, ℤ2,⋅ is a vector space.


